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Abstract

The transferability of retention data among isocratic and gradient RPLC elution modes is studied. For this purpose, 16
�-blockers were chromatographed under both isocratic and gradient elution with acetonitrile–water mobile phases. Taking into
account the elution mode where the experimental data come from, and the mode where the retention should be predicted, the
following combinations are possible: isocratic predictions from (i) isocratic or (ii) gradient experimental designs; and gradient
predictions from (iii) isocratic or (iv) gradient data. Each of these possibilities was checked using three retention models that
relate the logarithm of the retention factor: (a) linearly and (b) quadratically with the volume fraction of organic solvent, and
(c) linearly with a normalised mobile phase polarity parameter. The study was carried out under two different perspectives: a
straightforward examination of the prediction errors and the analysis of the uncertainties derived from the variance–covariance
matrix of the fitted models. The best combinations of prediction mode and model were: (i)–(b), (ii)–(c), (iii)–(b), and (iv)–(a) or
(c).
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

High-performance liquid chromatography (HPLC)
has become the most applied separation technique
for research and routine analysis purposes. Several
factors have contributed to this growth. One of them
is the possibility of finding the conditions for an opti-
mal separation in an easy and reliable way. The most
suited tools to obtain the best separation conditions
are, undoubtedly, interpretive optimisations, which
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substitute successfully the more intuitive—although
less efficient—trial-and-error approaches. Several
optimisation software packages using interpretive
methodologies have been developed. They expedite
greatly the analytical method development and assist
inexperienced users to set-up separations[1–5].

HPLC separations can be faced under two perspec-
tives, namely isocratic and gradient elution, depend-
ing on the retention factor ranges expected for the
involved solutes. The former mode has undergone a
stronger development, which can be attributed to a less
demanding instrumentation and its more simple fun-
daments. As a consequence, many reports are found in
the literature focused on the prediction of the retention
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in isocratic mode[6–9]. Retention modelling has also
been investigated in both normal[10,11]and reversed
phase[11,12]gradient chromatography. The accuracy
of computer simulation of such predictions has been
studied to anticipate and minimise the impact of pre-
dictive errors when the linear solvent strength theory
is used[13].

The prediction of the retention under gradient con-
ditions is usually done using information coming from
gradient experiments. Similarly, runs at a constant mo-
bile phase composition are routinely used to predict
the isocratic retention. Crossing the information be-
tween both elution modes is also possible: data from
gradient experiments can be used to anticipate the re-
tention in isocratic runs[14,15], and vice-versa[16].
However, the quality of the predictions, especially
when the information obtained in one elution mode
is used to predict the retention in the other, is still a
subject of study.

Any optimisation can be divided in two steps,
namely modelling of retention (whose accuracy has a
decisive influence on resolution measurements), and
the optimisation itself. Dividing the process in such
steps simplifies the treatment and makes the conclu-
sions more easily interpretable. This report concerns
the modelling step and discusses how to process the
information gathered in either isocratic or gradient
RPLC experimental designs to predict the retention in
both elution modes, in order to get a maximal benefit
for a subsequent optimisation. The limitations asso-
ciated to the selected experimental designs using dif-
ferent retention models are studied. The way to over-
come them is shown. The quality of the predictions is
evaluated by checking the uncertainty of the models.

2. Theory

2.1. Prediction of the retention

In isocratic mode, the retention behaviour of a given
solute in RPLC can be described by establishing a
polynomial relationship between the logarithm of the
retention factor,k, and the volume fraction of organic
solvent in the aqueous–organic mobile phase,ϕ. This
dependence has been proposed to be quadratic[17]:

logk = c0 + c1ϕ + c2ϕ
2 (1)

whereci are regression coefficients with characteristic
values for a given solute and column–solvent system.
In narrow concentration ranges of organic solvent, a
linear dependence can be valid:

logk = c0 + c1ϕ = logkw − Sϕ (2)

kw being the retention factor using pure water as mo-
bile phase andS a parameter related to the elution
strength. A similar two-parameter model, appropriate
for wider concentration ranges, substitutes the volume
fraction of organic modifier by a normalised polarity
parameter,PN

m [6]:

logk = c0 + c1 PN
m (3)

where again ci are regression coefficients. For
acetonitrile–water mixtures, the mobile phase polarity
parameter is defined as:

PN
m = 1 − 1.33ϕ

1 + 0.47ϕ
(4)

Eqs. (1)–(3)can be fitted using experimental data from
either isocratic or gradient experiments. Isocratic mod-
elling involves a straightforward fitting of the reten-
tion data, which can be improved by including weight-
ing factors to compensate the heteroscedasticity intro-
duced by the logarithmic transformation of the orig-
inal response[18]. A second possibility consists of
fitting the data taken from several gradient runs. For
this purpose, the retention of a solute eluting under a
given gradient program should be expressed as a func-
tion of the retention parameters inEqs. (1)–(3). The
fundamental integral equation for gradient elution is:

t0 =
∫ tg−t0

0

dt

k(ϕ(t))
(5)

wheret0 is the dead time,tg the retention time of the
solute under gradient conditions, andk(ϕ(t)) the equa-
tion describing the solute retention factor at the col-
umn inlet as a function of time. From this equation,
the retention time can be calculated for any gradi-
ent, provided thatk(ϕ(t)) is known. This dependence
is established by introducing the programmed gra-
dient, ϕ = f(t), in the retention model,k = f(ϕ)

(Eqs. (1)–(3)).
The linear solvent strength theory developed by

Snyder and Dolan[19] demonstrates that if a linear
dependence between logk at the column inlet and time
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holds (i.e.Eq. (2)is valid and the gradient program is
linear),Eq. (5)has the following algebraic solution:

tg = t0

b
log(2.3k0 b + 1) + t0 + tD (6)

whereb is related to the solvent strength, the slope of
the gradient program (ϕ′), andt0, through:

b = Sϕ′t0 (7)

being

ϕ′ = ϕ

tG
(8)

wheretG is the gradient time andϕ the difference
between final and starting organic solvent concentra-
tions. InEq. (6), tD is the time delay till the gradient
reaches the column inlet (dwell time), andk0 the re-
tention factor at the beginning of the gradient:

k0 = 10(logkw−Sϕ0) (9)

ϕ0 represents the mobile phase composition when the
gradient starts. For linear gradients:

ϕ = ϕ0 + ϕ′t (10)

When the solute migrates inside the column during the
dwell time (i.e. pre-elution),Eq. (6)must be rewritten
as[20,21]:

tg = t0

b
log [2.3k0 b(1 − f) + 1] + t0 + tD (11)

wheref indicates the column fraction migrated by the
solute before being affected by the gradient:

f = tD

t0k0
(12)

The solution of Eq. (5) depends on the retention
model. Eq. (11) can only be applied when a linear
relationship exists between logk and ϕ (Eq. (2)). It
should be noted thatEq. (5)has no algebraic solution
when the retention is described byEq. (3), since the
dependence betweenk and ϕ is non-linear. Mean-
while, Eq. (5)combined withEq. (1)has an algebraic
solution, although depending on the error function
[17]. In this case, an iterative method is required, since
the gradient retention time is included in the upper
limit of the integral. In this work, numerical integra-
tion (seeSection 4.1) was used withEqs. (1) and (3).

Data from isocratic experiments were linearly fitted
to obtain the model parameters (ci in Eqs. (1)–(3)).

For gradient experimental designs, an iterative process
was needed owing to the non-linear relationship be-
tween the retention time and the model parameters. In
this work, the quadratically-convergent Powell method
[22] was used for these fittings.

The main objective of this work was to exam-
ine the prediction of the retention in either isocratic
or gradient modes, when data coming from iso-
cratic or gradient experiments are modelled using
different equations. Four source–target combina-
tions of data transference were hence considered
(i.e. isocratic–isocratic, isocratic–gradient, gradient–
isocratic, gradient–gradient). Here, the term “source”
will be used to refer the elution mode where the ex-
periments were run to fit the data, and “target”, the
elution mode where the predictions are performed.

2.2. Stepwise numerical integration

As commented, in contrast to the straightforward
calculation of retention times under isocratic elution,
gradient conditions require frequently numerical in-
tegration of Eq. (5). The upper limit contains the
unknown variable,tg, which can be found by splitting
the integral in small isocratic steps (i.e. increasing
gradually the independent variable,t):

t0 =
∫ tg−t0

0

dt

k(t)
=

∫ t1

0

dt

k(t)
+

∫ t2

t1

dt

k(t)
+ · · ·

+
∫ ti

ti−1

dt

k(t)
+

∫ ti+1

ti

dt

k(t)
(13)

k(t) can be assumed to be constant in each of these
steps. In this case,t0 can be approximated to:

t0 ≈ t1

k0,1
+ t2 − t1

k1,2
+ · · · + ti − ti−1

ki−1,i

+ ti+1 − ti

ki,i+1

= I0,i + Ii,i+1 = I0,i+1 (14)

with:

ki,i+1 = k(ti) + k(ti+1)

2
(15)

The approximate cumulative integralI0,i is monitored
up to fulfil the conditionI0,i < t0 < I0,i+1. At this
point, tg can be easily obtained as:

tg = t0 + ti + (t0 − I0,i)ki,i+1 (16)
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The influence of the step size (ti+1 − ti) on the preci-
sion of the predictions will be discussed inSection 4.1.

2.3. Confidence intervals

Confidence intervals are a convenient way to assess
the quality of retention time predictions with regard
to the experimental factors (e.g. solvent concentra-
tion or gradient slope). These intervals are computed
in two steps. The first one is the calculation of the
variance–covariance matrix of the regression param-
eters in the retention model, which concerns the
uncertainties introduced by the source data. The sec-
ond step is the propagation of these uncertainties in
the prediction of retention times, which concerns the
target mode.

Besides time measurement errors, for a given solute,
the variance–covariance matrix depends on the reten-
tion model and the experimental design of the source
data. In the absence of lack of fit (i.e. the model de-
scribes correctly the retention), this matrix is given by
[23]:

V = S2
e,source[(J

T
sourcesourceJsource

source)
−1] (17)

whereS2
e,source is the pure experimental error of the

source data, which for a design includingn points to
fit a model withmparameters can be approximated to:

Se,source=
√∑n

i=1(t̂Rsource
i

− tRsource
i

)|b
n − m

(18)

t̂Rsource
i

and tRsource
i

are predicted and experimental re-
tention times, respectively, at theith point of the ex-
perimental design for the source elution mode. The
calculated retention times are evaluated using the pa-
rameter setb = (b1, b2, . . . , bm), which is obtained
by fitting the source experimental data to the consid-
ered retention model (i.e.biso for the parameters fitted
from isocratic data andbgrd from gradient data).

The Jacobian matrix inEq. (17), Jsource
source, measures

the sensitivity of time predictions in the source mode
to errors in the regressed parameters. Theij th element
of then × m sizedJsource

sourcematrix is defined as:

jsource
source,ij = ∂t̂Rsource

i

∂bj

∣∣∣∣∣
b

(19)

Eachjsource
source,ij term in the Jacobian matrix is the deriva-

tive of the ith predicted retention time in the source
mode, when thejth regression parameter inb is varied.

Eq. (17)can be used to calculate the uncertainties of
the predictions performed in the target elution mode.
The standard deviations of a set of experiments will
be given by:

starget=
√

Jsource
target V JsourceT

target

= Se,source

√
Jsource

target (JsourceT
source Jsource)−1

source JsourceT
target

(20)

where Jsource
target is the Jacobian matrix for the target

mode. The size of this matrix,q × m, is given by the
number of experiments (q) that are being predicted
and the number of fitted parameters (m) in the source
elution mode. Theij th element ofJsource

target is defined as:

jsource
target,ij =

∂t̂
R

target
i

∂bj

∣∣∣∣∣
b

(21)

Note that here, the predicted retention times are re-
ferred to the target mode (in contrast withEq. (19)), but
the set of parameters obtained in the source mode (b)
is used again. Consequently, four source–target Jaco-
bians are possible:Jiso

iso,J
iso
grd,Jgrd

iso andJgrd
grd. The subindex

i in Eq. (21)denotes a given experimental condition
for which the retention time is predicted (e.g. con-
centration of organic solvent in isocratic elution, or
gradient program in gradient elution). The confidence
limits are calculated from the standard deviation con-
sidering thet-value forn − m degrees of freedom.

3. Experimental

3.1. Reagents

Sixteen�-blockers were studied: acebutolol (Italfár-
maco, Alcobendas, Madrid, Spain), alprenolol, pin-
dolol, sotalol (Sigma, St. Louis, MO, USA), atenolol
(Zeneca Farma, Madrid), bisoprolol, propranolol,
practolol (ICI-Farma, Madrid), carteolol (Miquel-
Otsuka, Barcelona, Spain), celiprolol (Rhône-Poulenc
Rorer, Alcorcón, Madrid), esmolol (Du Pont-De
Nemours, Le Grand Saconnex, Switzerland), labetalol
(Glaxo, Tres Cantos, Madrid), metoprolol, oxprenolol
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(Ciba-Geigy, Barcelona), nadolol (Squibb, Esplugues
de Llobregat, Barcelona), and timolol (Merck, Sharp
& Dohme, Madrid). Acebutolol, atenolol, carteolol,
celiprolol, labetalol, metoprolol, nadolol, oxprenolol,
propranolol, and timolol, were kindly donated by the
cited pharmaceutical laboratories. The drugs were
dissolved in a small amount of methanol and diluted
with water. The concentration of the stock and in-
jected solutions were 100 and 10�g/ml, respectively.
These solutions remained stable for at least 2 months
at 4◦C.

Mobile phases were prepared with acetonitrile
(Scharlab, Barcelona). The pH was buffered with
di-sodium hydrogen phosphate and hydrochloric acid
(Panreac, Barcelona) at pH 3 to improve the peak
shape of the basic�-blockers. The mobile phases
and drug solutions to be injected were vacuum fil-
tered through 0.45�m Nylon membranes (Micron
Separations, Westboro, MA, USA). Nanopure water
(Barnstead, Sybron, Boston, MA, USA) was used
throughout. Acetone (Guinama, Barcelona) was used
to measure the dwell time.

3.2. Apparatus

An Agilent (Model HP 1100, Palo Alto, CA, USA)
chromatograph, equipped with a quaternary pump,
a UV-Vis detector and an autosampler, was used. A
PC computer was connected to the chromatograph
through an integrator (Model HP 3396A). Signal
acquisition was made with the PEAK-96 software
(Hewlett Packard, Avondale, PA, USA). An XTerra
MS C18 column (150 mm× 4.6 mm i.d., 5�m parti-
cle size) and a guard column of similar characteristics
(20 mm×3.0 mm i.d., 5�m particle size; Waters, Mil-
ford, MA, USA) were used. The detection wavelength
was 225 nm for all�-blockers, except timolol, for
which it was 300 nm. The flow-rate was 1.0 ml/min,
and the injection volume, 20�l. The whole study was
carried out at room temperature. Duplicate injections
of each chromatogram were made.

The dead time was measured as the first base-line
deviation, and the dwell time as indicated in[24],
by running a blank gradient where acetone was in-
creased from 0 to 1% in 20 min. For this determi-
nation, the times at the beginning and end of the
steep increase were taken. The signal was monitored
at 280 nm. Home-built in routines, written in MAT-

LAB 6.5 (The Mathworks, Natick, MA, USA), were
developed for data treatment.

4. Results and discussion

4.1. Precision in the numerical integration

The prediction of retention times under gradient
elution requires solvingEq. (5), either algebraic or
numerically (Eqs. (13)–(16)). Theoretically, the pre-
cision in tg can be increased as much as wished, by
just decreasing the time increment (ti+1 − ti) in the
split integrals (Eq. (13)). The higher the desired preci-
sion, the longer the computation time. Unfortunately,
there is a limitation associated with the pumping sys-
tem: real gradients are generated by the instrument by
approximating changes in composition to steps. This
makes useless the effort of obtaining a precision level
in tg greater than that allowed by such an instrumental
threshold. In our equipment, the minimal variation in
the organic solvent content is dϕ = 0.1%. The time in-
crements used in the numerical integration were fixed
taking into account this value.

For gradients involving moderate contents of or-
ganic solvent, the stepwise growth in concentration
is performed only once the programmed variation
reaches the critical level, dϕ. This introduces a de-
lay between programmed and actual gradients, which
makes the solvent concentration equal or systemati-
cally smaller than the programmed one. WhenEq. (5)
is numerically solved, this delay can be corrected by
modifying the programmed gradient to mimic the
actual stepwise gradient. In case of algebraic solution
(linear solvent strength theory), this delay, which de-
pends on the gradient slope, can be compensated by
the addition of a new term to the dwell time:

t′D = tD + dϕ

2ϕ′ (22)

The dwell time,tD, was calculated as commented in
Section 3by programming aϕ enough to make the
additional delay inEq. (22)negligible.

4.2. Accuracy in the prediction of retention times

Two experimental designs were carried out, one
of them in isocratic and the other in gradient mode.
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The ranges of acetonitrile concentration in the mobile
phases were selected to avoid retention times close to
the void volume or above 60 min. In the isocratic case,
chromatographic parameters were obtained from six
mobile phases containing 5, 10, 15, 20, 25 and 30%
(v/v) acetonitrile at pH 3. Due to the range of polarities
of the solute set (octanol–water partition coefficient,
logPo/w = 1–3), measurement of retention times in
all mobile phases of the design was not feasible or
convenient. In gradient mode, the data were obtained
from four gradient runs, where the modifier content
was increased from 5 to 30% acetonitrile intG = 20,
30, 40 and 50 min.

As commented, regarding the source of experimen-
tal data and the elution mode in which the prediction
should be made (i.e. target mode), four possibilities
can be considered: prediction of isocratic retention
times from either isocratic or gradient data, and pre-
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Fig. 1. Accuracy in the prediction of retention data for the set of 16�-blockers, using measurements from the isocratic experimental design
and (a and d)Eq. (1); (b and e)Eq. (2); and (c and f)Eq. (3). Retention data were predicted in (a)–(c) isocratic and (d)–(f) gradient
elution modes. Data for all compounds measured in all mobile phases of the experimental designs are plotted altogether.

diction of gradient retention times from either iso-
cratic or gradient data. In all cases,Eqs. (1)–(3)were
fitted using the procedure outlined inSection 2.1. For
each design (isocratic or gradient), all the available
experimental points were considered. Since the de-
grees of freedom were greater than zero (except when
modelling the retention of solutes 1–3 usingEq. (1)
with the isocratic design), the calculation of confi-
dence intervals in predictions (seeSection 2.3) was
feasible.

Fig. 1 depicts the errors obtained when the reten-
tion data were collected from an isocratic experimen-
tal design, using the three mentioned equations. In the
prediction of isocratic retention times (Fig. 1(a)–(c)),
only Eq. (1)—which contains three parameters—was
able to model properly wide ranges of organic solvent
concentration (in the example, 5–30%). On the other
hand, between the two-parameter equations studied in
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Fig. 2. Accuracy in the prediction of retention data for the set of 16�-blockers, using measurements from the gradient experimental
design. SeeFig. 1 for details.

this work (Eqs. (2) and (3)), the latter is preferable,
although some bias remains (compareFig. 1(b) and
(c)). Errors obtained in the isocratic fitting are prop-
agated in the prediction of gradient retention. Conse-
quently, onlyEq. (1)can be expected to yield unbiased
predictions (Fig. 1(d)), whereasEqs. (2) and (3)yield
large errors (Fig. 1(e) and (f)). As in the isocratic case,
Eq. (3)showed better accuracy thanEq. (2).

The comparison of the scattering inFig. 1(a) and
(d), where the lack of fit can be considered negligible,
allows the estimation of the magnitude of the errors
introduced by the transference of data from isocratic
to gradient elution. Since the mean error is 0.02 and
0.09 min (maximal errors are 0.12 and 0.33 min) for
isocratic and gradient predictions, respectively, the
mean uncertainty introduced by the transference of
data between both elution modes is 0.07 min. It should
be noted that the mean and maximal errors are 0.28

and 1.10 min forEq. (2) and 0.16 and 0.60 min for
Eq. (3) (isocratic predictions), and 0.38 and 2.06 min
for Eq. (2)and 0.19 and 0.89 min forEq. (3)(gradient
predictions).

Similar accuracy is observed in the application of
different retention models for the prediction of gra-
dient retention times from gradient experimental data
(compareFig. 2(d)–(f)), with mean and maximal er-
rors of 0.06 and 0.15 min, respectively. Such result
contrasts remarkably with that observed for the same
equations in the prediction of isocratic retention times
from isocratic experiments (Fig. 1(a)–(c)). This can
be understood by considering the main difference
amongEqs. (1)–(3): their capability of modelling the
retention in different solvent concentration ranges.
Thus, going fromEq. (2) to Eq. (3) to Eq. (1), the
solvent domain that can be accurately predicted be-
comes wider. The information about retention needed
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to predict gradient retention times concerns narrower
solvent domains than in the isocratic case.

The same problem can be outlined inversely: a gra-
dient experimental design provides information about
retention in narrower solvent domains in comparison
to the isocratic design. This justifies the poor results
yielded when gradient data are used to predict iso-
cratic retention (seeFig. 2(a)–(c)): the experimental
domains in isocratic predictions are usually larger than
gradient domains, which forces extrapolations. Note
that Fig. 2(a) and (b)(and alsoFig. 2(d) and (e)) are
virtually identical, since the quadratic term inEq. (1)
is non-significant in such fittings. Among the three
models,Eq. (3)exhibits the best behaviour in extrap-
olations (gradient-to-isocratic), and yields, therefore,
the best predictions: mean and maximal errors are 0.50
and 2.97 min for bothEqs. (1) and (2), and 0.29 and
2.45 min forEq. (3).

It is argued that errors intR have the same direction
for adjacent peaks. Therefore, their impact in the opti-
misation should be smaller than what is suggested by
the errors intR for single compounds. In order to check
this, errors intR = tR,i+1 − tR,i were computed.
Fig. 3shows the deviations between experimental and
predicted differences in retention times (tR − t̂R),
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Fig. 3. Errors in the prediction of the difference between retention times for adjacent peaks for the 16�-blockers against the mean
experimental retention time for the peak pair.Eq. (2) was fitted using (a and c) isocratic and (b and d) gradient experimental data, and
predictions were made in (a and b) isocratic and (c and d) gradient elution modes.

for all adjacent peaks in the mixture of 16�-blockers,
consideringEq. (2) and the four source–target com-
binations. As can be observed, the errors intR are
similar to those inFigs. 1 and 2. This shows that the
errors in retention for adjacent peaks do not cancel
each other, and evidences the importance of an accu-
rate modelling. Note thatEq. (2)was the most prob-
lematic; for this reason, it was selected for making this
comparison.

4.3. Confidence intervals and informative range of
modifier concentration

A deeper knowledge about the quality of the pre-
dictions can be obtained by examining the confidence
intervals. The uncertainties in the predictions were
calculated as indicated inSection 2.3for three rep-
resentative solutes, which were selected attending to
their retention: sotalol (fast elution), acebutolol (in-
termediate), and bisoprolol (slow)Figs. 4–6depict
the isocratic (left plot) and gradient (right plot) pre-
dictions, using both isocratic (solid lines) and gradi-
ent (dashed lines) source data, together with the 95%
confidence limits, for the three models under study
(Eqs. (1)–(3)). For sotalol, acebutolol and bisoprolol,
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Fig. 4. Prediction of: (a–c) isocratic and (d–f) gradient retention for sotalol using (a and d)Eq. (1), (b and e)Eq. (2), and (c and f)
Eq. (3). The 95% confidence limits are given. Source data: (solid line) isocratic and (dashed line) gradient. Experimental data are overlaid
(dots). The top of the figure shows acetonitrile concentration domains (x-axis scale in the plots below) experienced by the solute during
its migration inside the column, for each of the tested gradient programs. The isocratic confidence intervals obtained using gradients and
Eq. (1) (a) exceeded the axis scale and were not plotted.

only five (5–25% acetonitrile), five (10−30%) and
four (15−30%) isocratic measurements were made,
respectively. Outside these ranges the retention times
were unpractical.

Solutes chromatographed under gradient elution
seldom experience the whole domain of modifier
concentration scanned in the gradient program. This
means that they usually leave the column before
the completion of the gradient, and thus, only a
fraction of the programmed solvent concentration
range affects their migration. The top ofFigs. 4–6
shows the concentration ranges experienced by the

selected solutes during their migration inside the
column, for each of the four tested gradient pro-
grams. These diagrams indicate the actual concen-
tration ranges from which the gradient experiments
are able to extract information. These ranges will be
called “informative ranges of modifier concentration”.
As will be seen, their knowledge allows a more
proper comparison of the experimental designs
carried out in both isocratic and gradient elution
modes.

An adequate interpretation of the confidence inter-
vals requires considering the different factors that in-
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Fig. 5. Prediction of: (a–c) isocratic and (d–f) gradient retention for atenolol, showing the 95% confidence limits. SeeFig. 4 for details.

fluence the uncertainties:

(i) The lack of fit.
(ii) The overfitting produced by insufficient degrees

of freedom.
(iii) The extrapolation of the retention behaviour in

certain concentration regions.
(iv) The existence of modifier concentration domains

with negligible migration.
(v) The exponential dependence of the retention fac-

tor with solvent concentration.
(vi) The degree of the polynomial retention model

(linear or quadratic).

The lack of fit (i) and the overfitting (ii) increase
the pure experimental error,Se,source(Eq. (18)), which
broadens the confidence interval in the full experimen-

tal domain (Eq. (20)). Wider confidence limits are also
obtained when extrapolations (iii) are performed. The
examination of the modifier concentration ranges for
which the retention behaviour is extrapolated is not
so straightforward in gradient mode as in the isocratic
case. Since solutes usually leave the column before the
completion of the gradient, a certain domain of mod-
ifier concentration remains unstudied, and the predic-
tion of retention in this region should be extrapolated.

Domains of negligible migration (iv) are of concern
when predictions are made using gradient experiments
as source data. During a gradient, the solute experi-
ences a progressive increment in the migration rate,
and the gradient retention time will mainly depend on
the solute behaviour at those mobile phase composi-
tions where this rate is significant. This means that the
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Fig. 6. Prediction of: (a–c) isocratic and (d–f) gradient retention for bisoprolol, showing the 95% confidence limits. SeeFig. 4 for details.

observed retention time is insensitive to modifier con-
centrations of relatively low elution strength, which
inflates the confidence limits in such region.

Another factor that influences the confidence inter-
val pattern is the exponential dependence of the re-
tention model (v). At low modifier concentration, the
absolute errors are larger due to the higher retention.
The use of weighted regression according to[9] cer-
tainly diminishes this effect, but even in this case, the
trend of the prediction uncertainty remains slightly
distorted. Finally, the degree of the polynomial model
(vi) determines the number of waists observed in the
confidence intervals: one and two waists for linear
and quadratic models, respectively, as can be seen in
Figs. 4(a) and (d), 5(a) and (d), and 6(a) and (d)(note

that the confidence interval is out of scale inFig. 4(a),
being almost linear inFigs. 5(d) and 6(d)).

4.3.1. Isocratic predictions
The factors commented in the previous section are

shown up inFigs. 4–6. First, the case of the fastest
solute, sotalol, will be discussed (Fig. 4). Several dif-
ferences exist in the performance of the prediction
of isocratic retention, depending on the elution mode
of the source data (Fig. 4(a)–(c)). Gradients (dashed
lines) yield acceptable predictions for the three reten-
tion models only in narrow acetonitrile concentration
ranges, which are located approximately between 5
and 10% acetonitrile. Outside this range, the predic-
tions are biased. The upper limit of the informative
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solvent concentration range is lower than the compo-
sition of the mobile phase at which the solute leaves
the column with the steepest gradient. For sotalol, this
composition is 9% acetonitrile (tG = 20 min). On the
other hand, the lower limit of the informative range is
larger than the solvent concentrations at which negligi-
ble migration of the solute is observed. As commented
in the previous section, the uncertainty is minimal in
this informative range, which is detected as a waist in
the confidence interval (see dashed lines inFig. 4(b)
and (c)for approximately 6–8% acetonitrile). Due to
the extrapolation effect, confidence intervals broaden
outside this range, but above 15% acetonitrile they be-
come narrower (see againFig. 4(b) and (c)), because
the exponential decay of the retention factor compen-
sates the extrapolation effect (factor (v)). Finally, when
Eqs. (2) and (3)are used for the predictions, the lack
of fit makes the experimental values to lie outside the
confidence intervals for fast mobile phases.

Isocratic predictions from isocratic experimental
designs (solid lines inFig. 4(a)–(c)) take into account
a rather wide range of acetonitrile concentrations.
Therefore, onlyEq. (1) is valid (Fig. 4(a)), whereas
the two-parameter models yield a certain lack of
fit (Fig. 4(b) and (c)). This is more evident with
Eq. (2).

4.3.2. Gradient predictions
Predictions performed from isocratic designs (solid

lines in Fig. 4(d) and (f)) yield confidence intervals
usually similar to those achieved for linear regressions,
since the dependence oftg versustG is almost linear.
In this case, only the informative solvent concentration
range participates in the prediction of gradient reten-
tion and this range is inside the limits of the isocratic
design. Therefore, the uncertainty is nearly indepen-
dent of tG. Gradients are affected by several sources
of error (e.g. pumping instability and dwell time er-
ror) that are not considered in theSe,sourcevalue used
in Eq. (20). This gives rise to an underestimation of
the actual errors whenEq. (1)is used. Isocratic reten-
tion is usually better predicted (compareFig. 1(a) and
(d)), which certainly decreasesSe,source. Due to this
underestimation, the experimental points lie outside
the confidence intervals of the gradient predictions
(Fig. 4(d), solid line). In contrast, the lack of fit intro-
duced when the data are modelled usingEqs. (2) and
(3) increasesSe,source, which hides this underestima-

tion. The final result is a larger uncertainty (Fig. 4(e)
and (f)). With these two models, the bias produced in-
side the informative concentration range is translated
into systematic errors of the same sign in gradient
predictions.

The use of gradient data to fitEq. (1) gives rise
to overfitting, which is translated into an abnormally
wide confidence interval (Fig. 4(d), dashed lines).
SinceEqs. (2) and (3)do not overfit the data, the con-
fidence intervals agree with the observed scattering
(Fig. 4(e) and (f)).

4.3.3. Slower solutes
When going from faster to slower solutes, the in-

formative range of acetonitrile concentration is shifted
towards higher values. Thus, the minimum of the con-
fidence interval is located in the region between 11 and
17% acetonitrile for acebutolol, and between 15 and
22% acetonitrile for bisoprolol (Figs. 5 and 6). The
concentration range of solvent that affects the solute
during the gradient is wider for slower solutes (see top
diagrams in the figures). For these solutes, there is a
wider concentration domain of negligible migration,
and therefore, a larger uncertainty in the predictions
(see confidence intervals inFigs. 5(a)–(c) and 6(a)–(c)
close to 5% acetonitrile). Note that the scale in the
plots is logarithmic.

Another effect to consider is the high relative values
of k0 for slower solutes. This allowsEq. (6) to be
simplified [15]:

tg ≈ t0

b
log(2.3k0b) + t0 + tD (23)

This simplification yields errors smaller than 4% for
solutes withk0 > 45.

5. Conclusions

When facing an unknown separation problem, the
chromatographer often lacks of guidelines to decide
a priori if isocratic elution will give enough separa-
tion in a reasonable analysis time or a gradient will
be required. Fast gradients can be useful tools in the
first steps of method development to get a quick look
about the retention and resolution behaviour, in or-
der to minimise the experimental effort. The final aim
in such cases is to determine whether an isocratic
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separation would be sufficient. Both situations may re-
quire the prediction of retention in an elution mode dif-
ferent from that one in which the data were collected.
This implies the transference of the modelled data be-
tween different elution modes. In this work, we ex-
amine the quality of predictions of retention when the
information is crossed using three different models.

Gradient experiments give accurate information
about retention only in narrow solvent concentra-
tion ranges. This makes the more laborious and
time-consuming isocratic experimental designs richer
in information. The consequence is that transference
from gradient to isocratic elution mode requires ex-
trapolations in the solvent domain, which justifies the
better results offered by the equation based on polarity
parameters (Eq. (3)). This equation, which has been
applied here to gradient elution, was demonstrated
previously to have a particularly good performance
in extrapolations under isocratic elution, for 150
compounds of very different nature (alkylbenzenes,
phenols, anilines, phenones, halobenzenes, nitroben-
zenes, aromatic amides, aldehydes, esters, ethers and
nitriles) [9].

A practical concept proposed in this work is the in-
formative range of solvent concentration, which is the
concentration range where the accuracy of the predic-
tions from a given gradient design is adequate. This
concept can be explained reversely as the solvent con-
centration useful in isocratic-to-gradient predictions.
The error analysis in the transference of data between
elution modes, developed in this work, is proposed as
a useful tool to evaluate the quality of the predictions,
and eventually, detect the corresponding informative
ranges. The application of these enhanced predictions
to find optimal gradient separations will be considered
in the future.
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